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 

Abstract—We study a parallel batch-scheduling problem that 

involves the constraints of different job release times, non-

identical job sizes, and incompatible job families, is addressed. 

Mixed integer programming (MIP) and constraint programming 

(CP) models are proposed and tested on a set of common problem 

instances from a paper in the literature. Then, we compare the 

performance of the models with that of a variable neighbourhood 

search (VNS) heuristic from the same paper. Computational 

results show that CP outperforms VNS with respect to solution 

quality and run time by 3.4~6.8% and 47~91%, respectively. 

When compared to optimal solutions, the results demonstrate CP 

is capable of generating a near optimal solution in a short amount 

of time. 

 
Index Terms— parallel batching, incompatible, CP, MIP, VNS 

 

I. INTRODUCTION 

ur ability to computerize and automate a factory has 

dramatically advanced with the advent of 300 mm 

fabrication (fab) in the semiconductor industry. Consider a 

daily morning operations meeting (OPS) in a leading fab. The 

diffusion area, which contains batch-processing machines, 

receives high attention during the OPS due to its vulnerability 

to inventory fluctuations and the impact that it has on 

downstream processing steps. The dashboard points out 

negative key performance indices (KPI): cycle time, inventory, 

moves, and batching size. The diffusion area manager blames a 

poor scheduling/dispatching decision made by a computerized 

system and presents Gantt chart evidence of illogical myopic 

decisions. The manager orders a manual job reservation based 

on his own experience to replace the automated dispatching 

system, hoping for an improvement. In fact, the diffusion 

process is notorious for its lowest full automation rate, which is 

calculated as the total count of transactions minus the total 

count of manual transactions divided by the total count of 

transactions. Why is the diffusion process troublesome for 

practitioners? 

We now zoom in on the diffusion process. The diffusion 
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process is used to add dopants into the wafer in order to alter 

electrical properties. The high temperature of a diffusion 

machine makes the dopants diffuse into the wafer. So, the 

semiconductor industry calls the machine a furnace. This 

diffusion process is typically extremely slow and can take up to 

12 hours compared to less than an hour for most other process 

steps. In order to compensate for the agonizingly slow 

processing time and achieve economies of scale in production, 

diffusion furnace makers have designed the process to be batch-

processing. By its nature, a batching machine can create 

inventory bubbles or starvation to its downstream step. Suppose 

there are 10 batching machines in parallel which are about to 

complete their operations at the same time in the worst-case 

scenario. A bubble comprised of 1500 wafers (=6 jobs × 25 

wafers ×10 machines) can flow into the downstream steps. 

Similarly, it can also cause an inventory starvation. 

In batch-processing, multiple jobs can be simultaneously 

processed as long as the total size of the batch does not exceed 

machine capacity. Even if several jobs can be processed at the 

same time as a batch, jobs which have different recipes cannot 

be processed together, namely, incompatible job families 

(Uzsoy 1995 and Balasubramanian et al. 2004). The 

processing time of a batch is determined by the family of jobs 

in the batch in the diffusion process. It should be noted that the 

MIP-PA model in Section 3 assumes the processing time of a 

batch is dependent on the individual jobs in the batch. Jobs 

which belong to a same family have the same processing time 

in the test problem instances as shown in Table 1 so all models 

are constrained by the same restriction. 

The batch scheduling decision can be decomposed into two 

sub-decisions: batching and sequencing. However, the 

problem considered in this study has different job release 

times and multiple machines, which make the two decisions 

interrelated with each other. It will likely lead to poor 

solutions if the decisions are separated. 

The objective function of interest is to minimize the sum of 

total weighted completion time (TWCT) of all jobs. This 

objective concentrates on the cycle time, which is a significant 

indicator of semiconductor manufacturing performance 

[11][22]. Also, the objective is weighted by job priority, job 
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waiting times, length of remaining time windows, etc., in 

order to incorporate individual characteristics of each job [10]. 

As a result, the scheduling problem can be represented by 

Pm|rj, batch, incompatible | ∑ 𝑤𝑗𝐶𝑗 using the 𝛼|𝛽|𝛾 notation in 

Graham et al. [7].  

Dobson and Nambimadom [4] address the problem of 

minimising TWCT on a single batching machine with 

incompatible job families and jobs of different sizes and prove 

the problem is NP-hard. Therefore, our problem with multiple 

machines is also NP-hard. Among the many different 

approaches to the problem under study, we concentrate on 

constraint programming (CP) which has not been studied 

much in previous research.  

The rest of this paper is organized as follows: a literature 

review is presented in Section II and the proposed MIP and CP 

models are developed in Section III. Computational results are 

reported in Section IV and finally Section V covers the 

conclusions and areas for future research. 

II. LITERATURE REVIEW 

A. Heuristics Approach 

Batching problems are extensively considered in the 

literature so we narrow down our search to different job 

release times and incompatible job families.  In many cases 

jobs enter the system at different times of a planning horizon. 

The batch scheduling system in a semiconductor fab typically 

considers jobs which arrive in the future as well as those 

currently waiting, mainly due to its long processing time. 

Glassey and Weng [6], Fowler et al. [5], Weng and Leachman 

[32], and Uzsoy [29] address dynamic job arrivals with 

incompatible job families. Dobson and Nambimadom [4] 

discuss a single batching machine with incompatible job 

families but identical job arrival times and propose a 

generalized assignment heuristic. Balasubramanian et al. [2] 

devise a genetic algorithm (GA) solution for parallel batch 

machines with incompatible job families but identical job 

arrival times. Similarly, Koh et al. [15] address a single 

batching machine with incompatible job families but identical 

job arrival times and propose a GA. Yugma et al. [33] suggest 

a simulated annealing approach for a multi-stage parallel batch 

machine scheduling problem with incompatible job families 

and different job arrival times. Mazumdar et al. [21] discuss a 

single batching machine with incompatible job families but 

identical job arrival times and propose a tabu search approach. 

In particular, there are two papers in the literature that are 

most closely relevant to our study. Almeder and Mönch [1] 

and Cakici et al. [3] address the same problem involving 

parallel batch machines, different job release times, different 

job sizes, different processing times, and incompatible job 

families and they both suggest variable neighbourhood search 

(VNS) approaches. We will use the problem instances from 

Cakici et al. [3] and compare our CP results with their VNS 

results. 

B. Constraint Programming Approach  

Despite the fact that the aforementioned heuristics may 

generate fast and effective solutions, they are usually tailor-

made. Moreover, the efficiency of these techniques strongly 

depends on the proper implementation and fine tuning of 

parameters since they combine the problem representation and 

the solution strategy into the same framework. In contrast, a 

mathematical modelling approach divides the problem 

representation and the solution strategy. Therefore, a general 

MIP model can be solved by many different solvers [16]. 

However, it is often too slow to solve large-size industrial 

scheduling problems using MIP approaches. Here, CP 

becomes an attractive alternative. 

CP technology is well known in the artificial intelligence 

(AI) world owing to its success for efficiently solving many 

scheduling problems. CP Optimizer, the CP engine available 

in the IBM ILOG CPLEX Optimization Studio, provides 

specialized keywords and syntax for modeling detailed 

scheduling problems. A major benefit of the CP Optimizer 

approach to scheduling is that no enumeration of time, i.e. 

time buckets or time periods, is required. This means that 

relatively few decision variables are needed compared to MIP 

approaches that would require variables for each time bucket 

of a discretized model [8]. In CP Optimizer, both large 

neighbourhood search (LNS) and failure directed search 

(FDS) serve as solution strategies and together form the basis 

of the automatic search mechanism for scheduling problems 

[30]. Therefore, we can say CP modeling is not tailor-made 

for specific scheduling problems. To a modeller, it is simply a 

rich language of describing scheduling problems so that the 

remaining solution strategy solely resides in the hand of the 

optimizer engine, CP search algorithms are tested on a range 

of scheduling benchmarks: job shop, job shop with operators, 

flexible job shop, resource-constrained project scheduling 

problem, etc.  Results show that the proposed search 

algorithms often improve best-known lower and upper bounds 

and closes many open instances. Readers interested in details 

of the search algorithms are encouraged to refer to Vilím et al. 

[30]. 

The main contributions of this paper can be summarized as 

follows. To the best of our knowledge, there is no work on CP 

applied to the batch scheduling problem under study herein. 

The closest work to be found is in Malapert et al. [20]. They 

present a CP approach for a single batch-processing machine 

scheduling problem to minimize the maximum lateness, but 

they assume identical job release times and a single machine 

in the context of a one-dimensional bin packing problem. 

Their proposed approach outperforms two exact algorithms: a 

MIP formulation and a branch-and-price algorithm. Similarly, 

a MIP model is compared with CP for the daily scheduling 

problem of an operating theatre in Wang et al. [31]. They find 

the MIP model provides better performance for the weighted 

completion time objective and the CP model provides better 

performance for the makespan minimization objective.  

C. Methodology 

As computer hardware and software have improved, 

practitioners have been able to solve increasingly complex 

problems in a reasonable amount of time [14]. Therefore, we 

first formulate our batch scheduling problem as two distinct 

MIP models and run them with the latest version of IBM 

CPLEX 12.6.3 to setup a baseline. We then propose a CP 

representation of the problem hoping for fast and effective 

solutions. The performance of the MIP and CP models are 
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tested on the same problem instances in Cakici et al. [3] and 

compared with that of the VNS heuristic from the same paper.  

 

1) MIP-PA (Positional & assignment variables) 

We use the following notation for the MIP model: 

 

Set indexes: 

J  jobs (j) 

B   batches (b) 

M  machines (m) 

F  job families (f) 

 

Parameters: 

rj     release time of job j 

pj     processing time of job j 

sj      size of job j 

wj   weight of job j 

fj      family of job j 

km   maximum batch size of machine m 

L      arbitrarily large number 

 

Decision variables: 

Xjbm  1 if job j is in batch b on machine m; 0 otherwise 

Sbm  start time of batch b on machine m 

Cbm  completion time of batch b on machine m 

Cj  completion time of job j  

 

Resultant variables: 

Pbm  processing time of batch b on machine m 

Qbmf 1 if batch b on machine m consists of jobs of family f  

0 otherwise 
 

The scheduling problem under study may be formulated as 

follows: 

 

Minimize     ∑ 𝑤𝑗𝐶𝑗

𝑗

  (1.1) 

∑ ∑ 𝑋𝑗𝑏𝑚

𝑚𝑏

= 1            ∀𝑗  (1.2) 

∑ 𝑠𝑗  𝑋𝑗𝑏𝑚

𝑗

≤ 𝑘𝑚       ∀𝑏,  𝑚 (1.3) 

𝑃𝑏𝑚 ≥ 𝑝𝑗  𝑋𝑗𝑏𝑚           ∀𝑗, 𝑏, 𝑚 (1.4) 

𝑆𝑏𝑚 ≥ 𝑟𝑗𝑋𝑗𝑏𝑚          ∀𝑗, 𝑏, 𝑚 (1.5) 

𝑆𝑏𝑚 ≥ 𝐶𝑏−1,𝑚           ∀𝑏 > 1, 𝑚 (1.6) 

𝐶𝑏𝑚 ≥  𝑆𝑏𝑚 + 𝑃𝑏𝑚 ∀𝑏, 𝑚 (1.7) 

𝑄𝑏𝑚𝑓 ≥  𝑋𝑗𝑏𝑚           ∀𝑏, 𝑚, 𝑓 = 𝑓𝑗     (1.8) 

∑ 𝑄𝑏𝑚𝑓

𝑓

≤ 1           ∀𝑏, 𝑚 (1.9) 

𝐶𝑗 ≥ 𝐿 (𝑋𝑗𝑏𝑚 − 1) +  𝐶𝑏𝑚            ∀𝑗, 𝑏, 𝑚 (1.10) 

𝑋𝑗𝑏𝑚, 𝑄𝑏𝑚𝑓               ∀𝑗, 𝑏, 𝑚, 𝑓 (1.11) 

𝑆𝑏𝑚, 𝐶𝑏𝑚 ,𝑃𝑏𝑚,𝐶𝑗       ∀𝑗, 𝑏, 𝑚 (1.12) 

 

Objective (1.1) minimizes the sum of weighted completion 

time of all jobs. Constraint (1.2) ensures that each job is 

assigned to only one batch and processed on only one 

machine. Constraint (1.3) ensures that the total job size of a 

batch cannot exceed the batch size limit of the machine. 

Constraint (1.4) defines the processing time of a batch on a 

given machine, which is represented by the longest time of all 

jobs in the batch. Since only jobs which belong to the same 

family are batched together, this constraint still holds. 

Constraint (1.5) ensures that the start time of a batch is greater 

than or equal to the release times of all jobs in a batch, which 

is represented by the latest release time of all jobs in a batch. 

Constraint (1.6) ensures that the start time of a batch must be 

greater than or equal to the completion time of the preceding 

batch on the same machine. Constraint (1.7) calculates the 

completion time of a batch on each machine, which is 

represented by the start time of a batch plus its processing 

time. Constraints (1.8–1.9) ensure that jobs which belong to 

the same job family can be processed together.  Constraint 

(1.10) determines the completion times of each job which is 

equal to the completion time of the batch to which it is 

assigned. Constraints (1.11–1.12) impose the binary and non-

negativity restrictions, respectively. 

 

During preliminary experimentation, we found that this 

MIP model did not generate an optimal solution for 25-job 

instances after several days of CPLEX run-time so we explore 

other formulations. Keha et al. [12] discuss that in a single 

machine scheduling problem a less frequently used MIP 

formulation is computationally more efficient in practice than 

commonly used MIP formulations for certain problems and 

compare the four different types of formulation: completion 

time variables, time index variables, linear ordering variables, 

and positional and assignment variables. Our proposed MIP 

model is close to the positional and assignment variables 

formulation. Unlu and Mason [27] demonstrate the time-index 

variables formulation is the only formulation that produces 

optimal solutions in their TWC experiments for a parallel 

machine scheduling problem. Cakici et al. [3] also propose a 

time-indexed model for a similar problem being considered 

herein so we adopt their model. There is one minor difference. 

In the above MIP model, jobs of same family can have 

different processing times, whereas the following model 

assumes jobs of same family to have the same processing 

time, which is more representative of the diffusion process. 

 

2) MIP-TI (Time-indexed) 

 

T time slots (t) 

 𝑝𝑏  processing time of batch b 

 

Decision variables: 

Xmbt  1 if batch b starts its processing on machine m at time t; 

otherwise, 0 

Ybj  1 if job j is assigned to batch b; otherwise, 0 

Zb  time at which batch b finishes its required processing 
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Cj  completion time of job j 

Minimize     ∑ 𝑤𝑗𝐶𝑗

𝑗

  (2.1) 

∑ 𝑌𝑏𝑗

𝑏

= 1   ∀𝑗  (2.2) 

 𝑌𝑏𝑗 = 0  ∀𝑗 ∈ 𝑏 (2.3) 

∑ 𝑠𝑗𝑌𝑏𝑗  

𝑗

≤ 𝑘𝑚         ∀𝑏 (2.4) 

∑ ∑ 𝑋𝑚𝑏𝑡

𝑇− 𝑝
𝑏 

𝑡=0 

𝑀

𝑚=1

= 1         ∀𝑏 (2.5) 

∑ ∑ 𝑋𝑚𝑏𝑡̂

𝑡−1

𝑡̂=𝑚𝑎𝑥{0,𝑡− 𝑝
𝑏 

} 

𝐵

𝑏=1

≤ 1       ∀𝑚, 𝑡 (2.6) 

𝑍𝑏 = ∑ ∑ (𝑡 +  𝑝𝑏 )𝑋𝑚𝑏𝑡

𝑇− 𝑝
𝑏 

𝑡=0 

𝑀

𝑚=1

    ∀𝑏 (2.7) 

𝑍𝑏 ≥  ( 𝑟𝑗 +  𝑝𝑏 )𝑌𝑏𝑗         ∀𝑏, 𝑗  (2.8) 

𝐶𝑗 ≥ 𝑍𝑏 − 𝐿(1 − 𝑌𝑏𝑗)      ∀𝑏, 𝑗    (2.9) 

𝑋𝑚𝑏𝑡 , 𝑌𝑏𝑗   𝑎𝑟𝑒 𝑏𝑖𝑛𝑎𝑟𝑦     ∀𝑚, 𝑏, 𝑡, 𝑗 (2.10) 

𝑍𝑏 , 𝐶𝑗 ≥  0 ∀𝑏, 𝑗 (2.11) 

 

Objective (2.1) minimizes the sum of total weighted 

completion time of all jobs. Constraints (2.2–2.3) ensure that 

jobs are assigned to one of the available batches that are 

eligible to include the corresponding job family. In order to 

increase the efficiency of the model, every batch is pre-

designated for use by a specific job family and can only 

include jobs of that family. By this pre-definition, the number 

of variables is reduced as compared with the case of 

introducing batch assignment variables for all job-to-batch 

combinations. Machine batch size is taken into consideration 

in Constraint (2.4). Then, Constraint (2.5) enforces that each 

batch can start only at exactly one particular time and 

Constraint (2.6) ensures that at any given time at most one 

batch can be processed on each machine. Constraint (2.7) 

calculates a completion time of each batch as its processing 

start time plus its processing time. Constraint (2.8) ensures 

that a batch cannot start its processing until all jobs assigned to 

the corresponding batch become ready. Constraint (2.9) 

determines each job’s completion time is determined by the 

completion time of the batch to which it is assigned. Finally, 

constraints (2.10–2.11) impose the binary and non-negativity 

restrictions, respectively. 

Table I shows an example of fifteen jobs with different job 

release times, job sizes, and job families. In addition, there are 

two parallel batching machines with batch size of 50. Both 

MIP and CP successfully find an optimal solution for this 

problem.  Figure 1 represents an optimal solution with the 

TWCT of 627. Each value shows a job and its properties, for 

instance, j8r1p6s8f3 indicates job 8 with release time of 1, 

processing time of 6, size of 8, and family of 3. 

 

3) Constraint programming model 

The CP Optimizer provides specialized variables, 

constraints and functions designed for modelling scheduling 

problems. We exploit the features and develop a CP model. 

For a detailed discussion of CP modeling concepts, in 

particular using IBM CP Optimizer, please refer to Laborie 

and Rogerie [17], Laborie et al. [18], and IBM Software 

[8][9].  

Figure 2 shows a schematic diagram representing interval 

variables, state functions, and cumul functions being used in 

this batch-processing machine scheduling problem. Each job 

is expressed as an interval and is represented as a box in the 

figure. For instance, job 14 can be declared as "interval J14 in 

1..EndMax size 6..szMax" which indicates the earliest start 

time is 1 and the minimum processing time 6.  

In addition to the notation used in the previous MIP models, 

the following notation is added to the CP model.  

 

Sets 

Im,b  virtual set of jobs to be scheduled to during state b on 

machine m 

 

Interval variables: 

xj  object of job j 

 
Fig. 1.  An optimal solution for the fifteen-job example with different release 

times, sizes, and different job families. 

TABLE I 

THE EXAMPLE OF FIFTEEN-JOB PROBLEM WITH DIFFERENT RELEASE TIMES, 

SIZES, AND JOB FAMILIES. 

Job id 
Release 

time 

Processing 

time 
Job size Family Weight 

1 10 6 24 3 2 

2 9 10 10 2 1 

3 2 10 14 2 2 

4 7 10 20 1 2 

5 10 10 2 1 2 

6 2 6 15 3 5 

7 5 10 12 1 5 

8 1 6 8 3 3 

9 10 6 16 3 2 

10 7 6 17 3 1 

11 0 10 7 1 1 

12 6 10 7 2 4 

13 1 6 21 3 3 

14 1 6 21 3 3 

15 8 10 15 2 4 

 



0894-6507 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSM.2017.2740340, IEEE
Transactions on Semiconductor Manufacturing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

5 

xj,m  object of job j at machine m 

 

State variables: 

bm  state value of machine m 

 

We formulate the parallel batch-processing machines 

problem into a CP as follows. 

Interval 𝑥𝑗  𝑖𝑛 [ 𝑟𝑗) 𝑠𝑖𝑧𝑒 𝑝𝑗   ∀𝑗   (3.1) 

Interval 𝑥𝑗𝑚  𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙    ∀𝑗, 𝑚 (3.2) 

State 𝑏𝑚  ∀𝑚 (3.3) 

Cumul 𝑙𝑜𝑎𝑑𝑚,𝑏 = ∑ 𝑝𝑢𝑙𝑠𝑒 (𝑥𝑗𝑚, 𝑠𝑗)∀𝑗 ∈ 𝐼𝑚,𝑏 , 𝑚 

𝑗

  (3.4) 

Objective 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑(𝑤𝑗)𝑒𝑛𝑑𝑂𝑓(𝑥𝑗)

𝑗

                  (3.5) 

Constraint 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒(𝑥𝑗 , {𝑥𝑗,𝑚})  ∀𝑗, 𝑚      (3.6) 

Constraint 𝐴𝑙𝑤𝑎𝑦𝑠𝐸𝑞𝑢𝑎𝑙(𝑏𝑚, {𝑥𝑗,𝑚}, 𝑓𝑗) ∀𝑗, 𝑚 (3.7) 

Constraint 𝑙𝑜𝑎𝑑𝑚,𝑏 ≤ 𝑘𝑚   ∀𝑚    (3.8) 

 

Statement (3.1) declares the interval variables for the jobs. 

Note there is no optional flag, these interval variables are 

necessarily present. Therefore, each job must be assigned to a 

machine. Statement (3.2) declares the interval variables for the 

job to machine assignment as optional because not all 

machines are necessarily required to complete each job: 

interval variable xj,m will be present if and only if job j is 

allocated to machine m. Statement (3.3) declares the state 

function which implicitly divides the schedule horizon into 

multiple segments (batches). Statement (3.4) defines the cumul 

function which determines the total job size of a batch. Note 

that this cumul function is interwoven with the state function 

via the virtual set Im,b. The objective function (3.5) minimizes 

the sum of total weighted completion time of all jobs. 

Constraint (3.6) forces each job to be assigned to exactly one 

machine. Constraint (3.7) specifies that each batch (state) can 

be represented by only one job family which models the 

incompatible job families. Finally, constraint (3.8) ensures that 

the total job size of a batch cannot exceed the batch size limit 

of the machine.   
 
 

4) VNS model 

We next briefly introduce the VNS model suggested by 

Cakici et al. [3]. For an extensive review on the heuristic, we 

refer readers to the original paper.  

 Different local search procedures based on insertion and/or 

swap moves of the jobs and/or batches are examined by Cakici 

et al. [3]. After an initial solution is found and neighbourhood 

distance is set as 1, a local search is performed until the 

stopping criteria is reached. In VNS, every time before 

performing local search, a random solution is selected from 

the defined neighbourhood of the best solution so far. Because 

release times and incompatible job families exist in the 

problem, they claim that achieving good solutions by starting 

the search from a random solution is quite difficult. In order to 

explore neighbourhoods effectively, they investigate four 

different local search procedures, both separately and 

sequentially and they are named LS1, LS2, LS3, and LS4. The 

first two procedures are based on the insertions and swaps of 

the jobs. A job insert move removes a job from one batch and 

inserts it into another. A job swap move selects two jobs from 

the same family and switches their batch assignments. Swap 

and insert moves of the batches are also examined in the last 

two procedures. Job swap moves always yield the same 

number of jobs assigned to batches and machines. Similarly, 

the number of batches processed on each machine remains 

constant when batch swaps are applied. On the other hand, any 

improvement involving more than a single job’s batch re-

assignment or a single batch’s repositioning is not easily found 

with an insert move. Therefore, they jointly apply local search 

procedures in a sequential manner to overcome these 

weaknesses and come up with a total of 22 different VNS 

heuristics. They found H20 (LS2 + LS1 + LS4 + LS3) and 

H22 (LS4 + LS3 + LS2 + LS1) are the best performing 

heuristics. 

III. COMPUTATIONAL EXPERIMENTS 

In this section, we test the effectiveness of our CP model. 

We compare it with the MIP model as well as the VNS 

heuristics from Cakici et al. [3]. MIP and CP models are 

generated by IBM OPL and solved by CPLEX 12.6.3 on a 

personal computer with an Intel Core i5-3470 @ 3.2 Ghz 

processor and 16 GB RAM. 

A. Problem instances 

To test our model, we borrow the same test problem instances 

used by Cakici et al. [3]. They consider four levels of the 

number of jobs: 15, 25, 50, and 100, and also consider two 

levels of the number of machines: 2 and 3. Two different 

levels of number of job families are investigated: 3 and 5 as 

shown in Table II. The maximum batch size is set as 50, and 

job sizes are generated from a discrete uniform distribution of 

 
Fig. 2. A schematic diagram representing interval variables, state functions, 

and cumul functions. 
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[1, 50]. Processing times are generated from a discrete 

uniform distribution of [1, 15]. Job weights are randomly 

generated from a discrete uniform distribution of [1, 10]. For 

each combination of the levels, one-hundred-sixty problem 

instances are generated yielding a total of 2560 (4 × 2 × 2 × 

160) problem instances.  

 
TABLE II 

Factors and levels 

 Factors Levels 

Jobs 15, 25, 50, 100 

Families 3, 5 

Machines 2, 3 

 

We limit the computational time of CP to 180 seconds because 

a diffusion scheduling system in the semiconductor industry is 

expected to generate a Gantt-chart schedule every few 

minutes. 

 

B. Results 

Table III summarizes the computational results of the small 

15-job problem instances, a total of 640 instances. Columns 2–

6 contain the performance measures of each model. Cakici et 

al. [3] found that H20 and H22 are the best performing VNS 

heuristics so we benchmark them. Row 1 contains the average 

TWCT of each model. The number of times that a given 

model produced an optimal solution for each problem instance 

is reported in parentheses. Row 2 reports the performance 

ratio, 
𝑇𝑊𝐶𝑇(𝑚𝑜𝑑𝑒𝑙)

𝑇𝑊𝐶𝑇(𝑜𝑝𝑡𝑖𝑚𝑎𝑙)
, to assess the solution quality of each 

model. The last row reports the average run-time of each 

model. All the test instances, log files, and summary are 

located at http://schedulingworld.com/ 

The MIP-TI from Cakici et al. [3] successfully reaches at an 

optimal for all instances within 22.2 seconds on average. On 

the other hand, MIP-PA finds an optimal for 493 out of 640 

instances within 299.02 seconds on average. We confirm the 

effectiveness of the time-indexed MIP model. 

CP finds an optimal for all problem instances but one 

problem instance (3m5f_12116). The optimal objective 

function value is 719 whereas CP returns 720. However, it 

impressively finds optimal solutions on average within 2 

seconds compared to 22 seconds by MIP-TI. 

   Table IV summarizes the performance measures for the 25-

job problem instances. CP finds the best solutions in 633 out 

of 640 instances and is twice as fast as the VNS heuristics. At 

this time, both MIP models could not reach at an optimal even 

after several hours of runtime so the table only reports CP and 

VNS results. However, we are still interested in the solution 

quality against an optimal so we let CPLEX run for an 

unlimited time. 

Table V reports a comparison against optimal solutions of 

four individual instances after the exhaustive experimentation. 

We find our CP model is capable of generating solutions 

within about 2% of optimality in these 25-job instances. 

Tables VI–VII summarize the performance measures for the 

50 and 100 job problem instances. In this experimentation,  

CPLEX crashed with an error of “out of memory” after 

several days of runtime so we cannot compare to an optimal. 

When we compare CP against the VNS heuristics, CP 

consistently finds the best solutions faster than the VNS 

heuristics. 

Tables VIII–IX summarize the performance measures by the 

number of machines and the number of job families 

respectively. The results do not show a significant difference 

between the different levels. 

It is worth mentioning that the proposed CP model always 

finds a feasible solution within 1 s for all test problem 

instances. This remarkable run-time advantage of CP model 

may bring a paradigm shift to real-time scheduling, from real-

time dispatching, that is still prevalent in practice. 

 

  

 

TABLE V 

PERFORMANCE COMPARED TO OPTIMAL SOLUTIONS (25-JOB INSTANCES). 

  MIP-TI    Best of H20 &  H22 CP 

Instances TWCT (Runtime) 
TWCT 

(Runtime) 
PR 

TWCT 

(Runtime) 
   PR 

2m3f_1_1_1_1_1 
1527*  

(194164.6) 

1580  

(14.7) 
1.0347 

1562  

(0.9) 
1.0229 

2m5f_1_1_1_1_1 
1675*  

(1213.88) 

1741  

(38.2) 
1.0394 

1706  

(14.2) 
1.0185 

3m3f_1_1_1_1_1 
1146*  

(4029.02) 

1155  

(14.3) 
1.0079 

1152  

(7.5) 
1.0052 

3m5f_1_1_1_1_1 
1290*  

(1938.50) 

1299  

(59.6) 
1.0070 

1290  

(11.2) 
1.0000 

* indicates the optimal solution TABLE III 
PERFORMANCE COMPARED TO OPTIMALITY (15-JOB INSTANCE). 

15 jobs MIP-TI MIP-PA H20 H22 CP 

Avg. TWCT 

1347.87  

(640) 

1349.75  

(493) 

1394.60  

(95) 

1395.77  

(91) 

1347.87  

(639) 

Avg. PR 1.0000 1.0014 1.0347 1.0355 1.0000 

Avg. Run-time 22.2282 299.02 19.1417 19.0769 1.7858 
 

 

TABLE IV 

PERFORMANCE COMPARED TO BEST SOLUTIONS (25-JOB INSTANCES). 

25 jobs H20 H22 CP 

Avg. TWCT 3085.2484 (24) 3086.4219 (18) 2925.7250 (633) 

Avg. PR 1.0545 1.0549 1.0001 

Avg. Run-time 39.8255 40.0332 21.0010 
 

TABLE VI 

PERFORMANCE COMPARED TO BEST SOLUTIONS (50-JOB INSTANCES). 

50 jobs H20 H22 CP 

Avg. TWCT 9670.4203 (9) 9675.4391 
(14) 

9051.0359 
(626) Avg. PR 1.0697 1.0702 1.0001 

Avg. Run-time 118.1377 117.4761 57.4407 
 

 

TABLE VII 
PERFORMANCE COMPARED TO BEST SOLUTIONS (100-JOB INSTANCES). 

100 jobs H20 H22 CP 

Avg. TWCT 33051.5438 

(14) 

33044.1906 

(12) 

30798.3297 

(622) Avg. PR 1.0732 1.0729 1.0005 

 Avg. Run-time 218.2115 230.7303 109.8975 
 

http://schedulingworld.com/
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IV. CONCLUSION 

We address the parallel batch-scheduling problem which 

involves the constraints of different job release times, non-

identical job sizes, and incompatible job families which can be 

represented as Pm|rj, batch, incompatible | ∑ 𝑤𝑗𝐶𝑗. We first 

represent the problem with an MIP formulation based on 

positional and assignment variables and later adopt a time-

indexed MIP model for a faster computational time. Then, we 

propose a CP representation for the first time. Computational 

results demonstrate that the CP model has a computational 

advantage over the VNS heuristic as well as over the MIPs. It 

further reveals that CP is able to find an optimal for 639 out of 

640 instances for 15-job instances in less than 2 seconds on 

average. For the 25-jobs instances, CP is capable of generating 

solutions within 2% of an optimal solution. When we compare 

CP against the VNS heuristics, 3–7% reduction of TWC and 

47–91% reduction of computational time are achieved overall. 

This research can be further extended by considering multi-

stage batch operations. In the semiconductor industry, 

researchers have investigated the performance of local 

functional areas such as lithography, diffusion, etch, and 

implanter for the last two plus decades. Now, there is a growing 

need of orchestrating a whole factory to seek global 

optimization. One of strong use-cases is to schedule jobs having 

a time constraint between consecutive process steps (Sun et al. 

[24], Klemmt and Mönch 2012 [13], Sadeghi et al. [23]). 

Another use-case is to schedule urgent (hot, rocket, or ultra) 

jobs in order to meet a due date. Due to the non-preemptive 

nature of machines in a fab, a floor supervisor often takes an 

extreme measure letting some load ports of a machine empty as 

urgent jobs are approaching from an upstream operation which 

results in a productivity loss. A similar application seems to be 

prevalent in the production of pharmaceuticals 

(Sundaramoorthy and Maravelias [25], Kopanos et al. [16]). 

However, their batch stays unchanged throughout the floor 

compared to the dynamic nature of semiconductor industry 

where jobs are repetitively grouped for a batch-processing and 

un-batched for single processing, as jobs travel routes which are 

comprised of 500–1000 steps. Lastly, it will be interesting to 

compare CP against other metaheuristics in terms of run-time 

and solution-quality. 
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