
0894-6507 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSM.2017.2740340, IEEE
Transactions on Semiconductor Manufacturing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1



Abstract—We study a parallel batch-scheduling problem that

involves the constraints of different job release times, non-

identical job sizes, and incompatible job families, is addressed.

Mixed integer programming (MIP) and constraint programming

(CP) models are proposed and tested on a set of common problem

instances from a paper in the literature. Then, we compare the

performance of the models with that of a variable neighbourhood

search (VNS) heuristic from the same paper. Computational

results show that CP outperforms VNS with respect to solution

quality and run time by 3.4~6.8% and 47~91%, respectively.

When compared to optimal solutions, the results demonstrate CP

is capable of generating a near optimal solution in a short amount

of time.

Index Terms— parallel batching, incompatible, CP, MIP, VNS

I. INTRODUCTION

ur ability to computerize and automate a factory has

dramatically advanced with the advent of 300 mm

fabrication (fab) in the semiconductor industry. Consider a

daily morning operations meeting (OPS) in a leading fab. The

diffusion area, which contains batch-processing machines,

receives high attention during the OPS due to its vulnerability

to inventory fluctuations and the impact that it has on

downstream processing steps. The dashboard points out

negative key performance indices (KPI): cycle time, inventory,

moves, and batching size. The diffusion area manager blames a

poor scheduling/dispatching decision made by a computerized

system and presents Gantt chart evidence of illogical myopic

decisions. The manager orders a manual job reservation based

on his own experience to replace the automated dispatching

system, hoping for an improvement. In fact, the diffusion

process is notorious for its lowest full automation rate, which is

calculated as the total count of transactions minus the total

count of manual transactions divided by the total count of

transactions. Why is the diffusion process troublesome for

practitioners?

We now zoom in on the diffusion process. The diffusion

A. Ham is with the Liberty University, Lynchburg, VA 24501 USA (e-mail:

mham@liberty.edu).

J. Fowler is with the Arizona State University, Supply Chain Management,
and Tempe, AZ 85287 USA (e-mail: john.fowler@asu.edu).

process is used to add dopants into the wafer in order to alter

electrical properties. The high temperature of a diffusion

machine makes the dopants diffuse into the wafer. So, the

semiconductor industry calls the machine a furnace. This

diffusion process is typically extremely slow and can take up to

12 hours compared to less than an hour for most other process

steps. In order to compensate for the agonizingly slow

processing time and achieve economies of scale in production,

diffusion furnace makers have designed the process to be batch-

processing. By its nature, a batching machine can create

inventory bubbles or starvation to its downstream step. Suppose

there are 10 batching machines in parallel which are about to

complete their operations at the same time in the worst-case

scenario. A bubble comprised of 1500 wafers (=6 jobs × 25

wafers ×10 machines) can flow into the downstream steps.

Similarly, it can also cause an inventory starvation.

In batch-processing, multiple jobs can be simultaneously

processed as long as the total size of the batch does not exceed

machine capacity. Even if several jobs can be processed at the

same time as a batch, jobs which have different recipes cannot

be processed together, namely, incompatible job families

(Uzsoy 1995 and Balasubramanian et al. 2004). The

processing time of a batch is determined by the family of jobs

in the batch in the diffusion process. It should be noted that the

MIP-PA model in Section 3 assumes the processing time of a

batch is dependent on the individual jobs in the batch. Jobs

which belong to a same family have the same processing time

in the test problem instances as shown in Table 1 so all models

are constrained by the same restriction.

The batch scheduling decision can be decomposed into two

sub-decisions: batching and sequencing. However, the

problem considered in this study has different job release

times and multiple machines, which make the two decisions

interrelated with each other. It will likely lead to poor

solutions if the decisions are separated.

The objective function of interest is to minimize the sum of

total weighted completion time (TWCT) of all jobs. This

objective concentrates on the cycle time, which is a significant

indicator of semiconductor manufacturing performance

[11][22]. Also, the objective is weighted by job priority, job

E. Cakici is with IBM Turk, Buyukdere Cad. Yapikredi Plaza B Blok

Levent, 34330, Istanbul, Turkey (e-mail: eray.cakici@gmail.com).

Constraint Programming Approach for

Scheduling Jobs with Release Times, Non-

identical Sizes, and Incompatible Families on

Parallel Batching Machines

Andy Ham, Member, IEEE, John Fowler, Member, IEEE, and Eray Cakici

O

mailto:mham@liberty.edu
mailto:john.fowler@asu.edu
mailto:eray.cakici@gmail.com

0894-6507 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSM.2017.2740340, IEEE
Transactions on Semiconductor Manufacturing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

waiting times, length of remaining time windows, etc., in

order to incorporate individual characteristics of each job [10].

As a result, the scheduling problem can be represented by

Pm|rj, batch, incompatible | ∑ 𝑤𝑗𝐶𝑗 using the 𝛼|𝛽|𝛾 notation in

Graham et al. [7].

Dobson and Nambimadom [4] address the problem of

minimising TWCT on a single batching machine with

incompatible job families and jobs of different sizes and prove

the problem is NP-hard. Therefore, our problem with multiple

machines is also NP-hard. Among the many different

approaches to the problem under study, we concentrate on

constraint programming (CP) which has not been studied

much in previous research.

The rest of this paper is organized as follows: a literature

review is presented in Section II and the proposed MIP and CP

models are developed in Section III. Computational results are

reported in Section IV and finally Section V covers the

conclusions and areas for future research.

II. LITERATURE REVIEW

A. Heuristics Approach

Batching problems are extensively considered in the

literature so we narrow down our search to different job

release times and incompatible job families. In many cases

jobs enter the system at different times of a planning horizon.

The batch scheduling system in a semiconductor fab typically

considers jobs which arrive in the future as well as those

currently waiting, mainly due to its long processing time.

Glassey and Weng [6], Fowler et al. [5], Weng and Leachman

[32], and Uzsoy [29] address dynamic job arrivals with

incompatible job families. Dobson and Nambimadom [4]

discuss a single batching machine with incompatible job

families but identical job arrival times and propose a

generalized assignment heuristic. Balasubramanian et al. [2]

devise a genetic algorithm (GA) solution for parallel batch

machines with incompatible job families but identical job

arrival times. Similarly, Koh et al. [15] address a single

batching machine with incompatible job families but identical

job arrival times and propose a GA. Yugma et al. [33] suggest

a simulated annealing approach for a multi-stage parallel batch

machine scheduling problem with incompatible job families

and different job arrival times. Mazumdar et al. [21] discuss a

single batching machine with incompatible job families but

identical job arrival times and propose a tabu search approach.

In particular, there are two papers in the literature that are

most closely relevant to our study. Almeder and Mönch [1]

and Cakici et al. [3] address the same problem involving

parallel batch machines, different job release times, different

job sizes, different processing times, and incompatible job

families and they both suggest variable neighbourhood search

(VNS) approaches. We will use the problem instances from

Cakici et al. [3] and compare our CP results with their VNS

results.

B. Constraint Programming Approach

Despite the fact that the aforementioned heuristics may

generate fast and effective solutions, they are usually tailor-

made. Moreover, the efficiency of these techniques strongly

depends on the proper implementation and fine tuning of

parameters since they combine the problem representation and

the solution strategy into the same framework. In contrast, a

mathematical modelling approach divides the problem

representation and the solution strategy. Therefore, a general

MIP model can be solved by many different solvers [16].

However, it is often too slow to solve large-size industrial

scheduling problems using MIP approaches. Here, CP

becomes an attractive alternative.

CP technology is well known in the artificial intelligence

(AI) world owing to its success for efficiently solving many

scheduling problems. CP Optimizer, the CP engine available

in the IBM ILOG CPLEX Optimization Studio, provides

specialized keywords and syntax for modeling detailed

scheduling problems. A major benefit of the CP Optimizer

approach to scheduling is that no enumeration of time, i.e.

time buckets or time periods, is required. This means that

relatively few decision variables are needed compared to MIP

approaches that would require variables for each time bucket

of a discretized model [8]. In CP Optimizer, both large

neighbourhood search (LNS) and failure directed search

(FDS) serve as solution strategies and together form the basis

of the automatic search mechanism for scheduling problems

[30]. Therefore, we can say CP modeling is not tailor-made

for specific scheduling problems. To a modeller, it is simply a

rich language of describing scheduling problems so that the

remaining solution strategy solely resides in the hand of the

optimizer engine, CP search algorithms are tested on a range

of scheduling benchmarks: job shop, job shop with operators,

flexible job shop, resource-constrained project scheduling

problem, etc. Results show that the proposed search

algorithms often improve best-known lower and upper bounds

and closes many open instances. Readers interested in details

of the search algorithms are encouraged to refer to Vilím et al.

[30].

The main contributions of this paper can be summarized as

follows. To the best of our knowledge, there is no work on CP

applied to the batch scheduling problem under study herein.

The closest work to be found is in Malapert et al. [20]. They

present a CP approach for a single batch-processing machine

scheduling problem to minimize the maximum lateness, but

they assume identical job release times and a single machine

in the context of a one-dimensional bin packing problem.

Their proposed approach outperforms two exact algorithms: a

MIP formulation and a branch-and-price algorithm. Similarly,

a MIP model is compared with CP for the daily scheduling

problem of an operating theatre in Wang et al. [31]. They find

the MIP model provides better performance for the weighted

completion time objective and the CP model provides better

performance for the makespan minimization objective.

C. Methodology

As computer hardware and software have improved,

practitioners have been able to solve increasingly complex

problems in a reasonable amount of time [14]. Therefore, we

first formulate our batch scheduling problem as two distinct

MIP models and run them with the latest version of IBM

CPLEX 12.6.3 to setup a baseline. We then propose a CP

representation of the problem hoping for fast and effective

solutions. The performance of the MIP and CP models are

0894-6507 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSM.2017.2740340, IEEE
Transactions on Semiconductor Manufacturing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

tested on the same problem instances in Cakici et al. [3] and

compared with that of the VNS heuristic from the same paper.

1) MIP-PA (Positional & assignment variables)

We use the following notation for the MIP model:

Set indexes:

J jobs (j)

B batches (b)

M machines (m)

F job families (f)

Parameters:

rj release time of job j

pj processing time of job j

sj size of job j

wj weight of job j

fj family of job j

km maximum batch size of machine m

L arbitrarily large number

Decision variables:

Xjbm 1 if job j is in batch b on machine m; 0 otherwise

Sbm start time of batch b on machine m

Cbm completion time of batch b on machine m

Cj completion time of job j

Resultant variables:

Pbm processing time of batch b on machine m

Qbmf 1 if batch b on machine m consists of jobs of family f

0 otherwise

The scheduling problem under study may be formulated as

follows:

Minimize ∑ 𝑤𝑗𝐶𝑗

𝑗

 (1.1)

∑ ∑ 𝑋𝑗𝑏𝑚

𝑚𝑏

= 1 ∀𝑗 (1.2)

∑ 𝑠𝑗 𝑋𝑗𝑏𝑚

𝑗

≤ 𝑘𝑚 ∀𝑏, 𝑚 (1.3)

𝑃𝑏𝑚 ≥ 𝑝𝑗 𝑋𝑗𝑏𝑚 ∀𝑗, 𝑏, 𝑚 (1.4)

𝑆𝑏𝑚 ≥ 𝑟𝑗𝑋𝑗𝑏𝑚 ∀𝑗, 𝑏, 𝑚 (1.5)

𝑆𝑏𝑚 ≥ 𝐶𝑏−1,𝑚 ∀𝑏 > 1, 𝑚 (1.6)

𝐶𝑏𝑚 ≥ 𝑆𝑏𝑚 + 𝑃𝑏𝑚 ∀𝑏, 𝑚 (1.7)

𝑄𝑏𝑚𝑓 ≥ 𝑋𝑗𝑏𝑚 ∀𝑏, 𝑚, 𝑓 = 𝑓𝑗 (1.8)

∑ 𝑄𝑏𝑚𝑓

𝑓

≤ 1 ∀𝑏, 𝑚 (1.9)

𝐶𝑗 ≥ 𝐿 (𝑋𝑗𝑏𝑚 − 1) + 𝐶𝑏𝑚 ∀𝑗, 𝑏, 𝑚 (1.10)

𝑋𝑗𝑏𝑚, 𝑄𝑏𝑚𝑓 ∀𝑗, 𝑏, 𝑚, 𝑓 (1.11)

𝑆𝑏𝑚, 𝐶𝑏𝑚 ,𝑃𝑏𝑚,𝐶𝑗 ∀𝑗, 𝑏, 𝑚 (1.12)

Objective (1.1) minimizes the sum of weighted completion

time of all jobs. Constraint (1.2) ensures that each job is

assigned to only one batch and processed on only one

machine. Constraint (1.3) ensures that the total job size of a

batch cannot exceed the batch size limit of the machine.

Constraint (1.4) defines the processing time of a batch on a

given machine, which is represented by the longest time of all

jobs in the batch. Since only jobs which belong to the same

family are batched together, this constraint still holds.

Constraint (1.5) ensures that the start time of a batch is greater

than or equal to the release times of all jobs in a batch, which

is represented by the latest release time of all jobs in a batch.

Constraint (1.6) ensures that the start time of a batch must be

greater than or equal to the completion time of the preceding

batch on the same machine. Constraint (1.7) calculates the

completion time of a batch on each machine, which is

represented by the start time of a batch plus its processing

time. Constraints (1.8–1.9) ensure that jobs which belong to

the same job family can be processed together. Constraint

(1.10) determines the completion times of each job which is

equal to the completion time of the batch to which it is

assigned. Constraints (1.11–1.12) impose the binary and non-

negativity restrictions, respectively.

During preliminary experimentation, we found that this

MIP model did not generate an optimal solution for 25-job

instances after several days of CPLEX run-time so we explore

other formulations. Keha et al. [12] discuss that in a single

machine scheduling problem a less frequently used MIP

formulation is computationally more efficient in practice than

commonly used MIP formulations for certain problems and

compare the four different types of formulation: completion

time variables, time index variables, linear ordering variables,

and positional and assignment variables. Our proposed MIP

model is close to the positional and assignment variables

formulation. Unlu and Mason [27] demonstrate the time-index

variables formulation is the only formulation that produces

optimal solutions in their TWC experiments for a parallel

machine scheduling problem. Cakici et al. [3] also propose a

time-indexed model for a similar problem being considered

herein so we adopt their model. There is one minor difference.

In the above MIP model, jobs of same family can have

different processing times, whereas the following model

assumes jobs of same family to have the same processing

time, which is more representative of the diffusion process.

2) MIP-TI (Time-indexed)

T time slots (t)

 𝑝𝑏 processing time of batch b

Decision variables:

Xmbt 1 if batch b starts its processing on machine m at time t;

otherwise, 0

Ybj 1 if job j is assigned to batch b; otherwise, 0

Zb time at which batch b finishes its required processing

0894-6507 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSM.2017.2740340, IEEE
Transactions on Semiconductor Manufacturing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

Cj completion time of job j

Minimize ∑ 𝑤𝑗𝐶𝑗

𝑗

 (2.1)

∑ 𝑌𝑏𝑗

𝑏

= 1 ∀𝑗 (2.2)

 𝑌𝑏𝑗 = 0 ∀𝑗 ∈ 𝑏 (2.3)

∑ 𝑠𝑗𝑌𝑏𝑗

𝑗

≤ 𝑘𝑚 ∀𝑏 (2.4)

∑ ∑ 𝑋𝑚𝑏𝑡

𝑇− 𝑝
𝑏

𝑡=0

𝑀

𝑚=1

= 1 ∀𝑏 (2.5)

∑ ∑ 𝑋𝑚𝑏𝑡̂

𝑡−1

𝑡̂=𝑚𝑎𝑥{0,𝑡− 𝑝
𝑏

}

𝐵

𝑏=1

≤ 1 ∀𝑚, 𝑡 (2.6)

𝑍𝑏 = ∑ ∑ (𝑡 + 𝑝𝑏)𝑋𝑚𝑏𝑡

𝑇− 𝑝
𝑏

𝑡=0

𝑀

𝑚=1

 ∀𝑏 (2.7)

𝑍𝑏 ≥ (𝑟𝑗 + 𝑝𝑏)𝑌𝑏𝑗 ∀𝑏, 𝑗 (2.8)

𝐶𝑗 ≥ 𝑍𝑏 − 𝐿(1 − 𝑌𝑏𝑗) ∀𝑏, 𝑗 (2.9)

𝑋𝑚𝑏𝑡 , 𝑌𝑏𝑗 𝑎𝑟𝑒 𝑏𝑖𝑛𝑎𝑟𝑦 ∀𝑚, 𝑏, 𝑡, 𝑗 (2.10)

𝑍𝑏 , 𝐶𝑗 ≥ 0 ∀𝑏, 𝑗 (2.11)

Objective (2.1) minimizes the sum of total weighted

completion time of all jobs. Constraints (2.2–2.3) ensure that

jobs are assigned to one of the available batches that are

eligible to include the corresponding job family. In order to

increase the efficiency of the model, every batch is pre-

designated for use by a specific job family and can only

include jobs of that family. By this pre-definition, the number

of variables is reduced as compared with the case of

introducing batch assignment variables for all job-to-batch

combinations. Machine batch size is taken into consideration

in Constraint (2.4). Then, Constraint (2.5) enforces that each

batch can start only at exactly one particular time and

Constraint (2.6) ensures that at any given time at most one

batch can be processed on each machine. Constraint (2.7)

calculates a completion time of each batch as its processing

start time plus its processing time. Constraint (2.8) ensures

that a batch cannot start its processing until all jobs assigned to

the corresponding batch become ready. Constraint (2.9)

determines each job’s completion time is determined by the

completion time of the batch to which it is assigned. Finally,

constraints (2.10–2.11) impose the binary and non-negativity

restrictions, respectively.

Table I shows an example of fifteen jobs with different job

release times, job sizes, and job families. In addition, there are

two parallel batching machines with batch size of 50. Both

MIP and CP successfully find an optimal solution for this

problem. Figure 1 represents an optimal solution with the

TWCT of 627. Each value shows a job and its properties, for

instance, j8r1p6s8f3 indicates job 8 with release time of 1,

processing time of 6, size of 8, and family of 3.

3) Constraint programming model

The CP Optimizer provides specialized variables,

constraints and functions designed for modelling scheduling

problems. We exploit the features and develop a CP model.

For a detailed discussion of CP modeling concepts, in

particular using IBM CP Optimizer, please refer to Laborie

and Rogerie [17], Laborie et al. [18], and IBM Software

[8][9].

Figure 2 shows a schematic diagram representing interval

variables, state functions, and cumul functions being used in

this batch-processing machine scheduling problem. Each job

is expressed as an interval and is represented as a box in the

figure. For instance, job 14 can be declared as "interval J14 in

1..EndMax size 6..szMax" which indicates the earliest start

time is 1 and the minimum processing time 6.

In addition to the notation used in the previous MIP models,

the following notation is added to the CP model.

Sets

Im,b virtual set of jobs to be scheduled to during state b on

machine m

Interval variables:

xj object of job j

Fig. 1. An optimal solution for the fifteen-job example with different release

times, sizes, and different job families.

TABLE I

THE EXAMPLE OF FIFTEEN-JOB PROBLEM WITH DIFFERENT RELEASE TIMES,

SIZES, AND JOB FAMILIES.

Job id
Release

time

Processing

time
Job size Family Weight

1 10 6 24 3 2

2 9 10 10 2 1

3 2 10 14 2 2

4 7 10 20 1 2

5 10 10 2 1 2

6 2 6 15 3 5

7 5 10 12 1 5

8 1 6 8 3 3

9 10 6 16 3 2

10 7 6 17 3 1

11 0 10 7 1 1

12 6 10 7 2 4

13 1 6 21 3 3

14 1 6 21 3 3

15 8 10 15 2 4

0894-6507 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSM.2017.2740340, IEEE
Transactions on Semiconductor Manufacturing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

xj,m object of job j at machine m

State variables:

bm state value of machine m

We formulate the parallel batch-processing machines

problem into a CP as follows.

Interval 𝑥𝑗 𝑖𝑛 [𝑟𝑗) 𝑠𝑖𝑧𝑒 𝑝𝑗 ∀𝑗 (3.1)

Interval 𝑥𝑗𝑚 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙 ∀𝑗, 𝑚 (3.2)

State 𝑏𝑚 ∀𝑚 (3.3)

Cumul 𝑙𝑜𝑎𝑑𝑚,𝑏 = ∑ 𝑝𝑢𝑙𝑠𝑒 (𝑥𝑗𝑚, 𝑠𝑗)∀𝑗 ∈ 𝐼𝑚,𝑏 , 𝑚

𝑗

 (3.4)

Objective 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑(𝑤𝑗)𝑒𝑛𝑑𝑂𝑓(𝑥𝑗)

𝑗

 (3.5)

Constraint 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒(𝑥𝑗 , {𝑥𝑗,𝑚}) ∀𝑗, 𝑚 (3.6)

Constraint 𝐴𝑙𝑤𝑎𝑦𝑠𝐸𝑞𝑢𝑎𝑙(𝑏𝑚, {𝑥𝑗,𝑚}, 𝑓𝑗) ∀𝑗, 𝑚 (3.7)

Constraint 𝑙𝑜𝑎𝑑𝑚,𝑏 ≤ 𝑘𝑚 ∀𝑚 (3.8)

Statement (3.1) declares the interval variables for the jobs.

Note there is no optional flag, these interval variables are

necessarily present. Therefore, each job must be assigned to a

machine. Statement (3.2) declares the interval variables for the

job to machine assignment as optional because not all

machines are necessarily required to complete each job:

interval variable xj,m will be present if and only if job j is

allocated to machine m. Statement (3.3) declares the state

function which implicitly divides the schedule horizon into

multiple segments (batches). Statement (3.4) defines the cumul

function which determines the total job size of a batch. Note

that this cumul function is interwoven with the state function

via the virtual set Im,b. The objective function (3.5) minimizes

the sum of total weighted completion time of all jobs.

Constraint (3.6) forces each job to be assigned to exactly one

machine. Constraint (3.7) specifies that each batch (state) can

be represented by only one job family which models the

incompatible job families. Finally, constraint (3.8) ensures that

the total job size of a batch cannot exceed the batch size limit

of the machine.

4) VNS model

We next briefly introduce the VNS model suggested by

Cakici et al. [3]. For an extensive review on the heuristic, we

refer readers to the original paper.

 Different local search procedures based on insertion and/or

swap moves of the jobs and/or batches are examined by Cakici

et al. [3]. After an initial solution is found and neighbourhood

distance is set as 1, a local search is performed until the

stopping criteria is reached. In VNS, every time before

performing local search, a random solution is selected from

the defined neighbourhood of the best solution so far. Because

release times and incompatible job families exist in the

problem, they claim that achieving good solutions by starting

the search from a random solution is quite difficult. In order to

explore neighbourhoods effectively, they investigate four

different local search procedures, both separately and

sequentially and they are named LS1, LS2, LS3, and LS4. The

first two procedures are based on the insertions and swaps of

the jobs. A job insert move removes a job from one batch and

inserts it into another. A job swap move selects two jobs from

the same family and switches their batch assignments. Swap

and insert moves of the batches are also examined in the last

two procedures. Job swap moves always yield the same

number of jobs assigned to batches and machines. Similarly,

the number of batches processed on each machine remains

constant when batch swaps are applied. On the other hand, any

improvement involving more than a single job’s batch re-

assignment or a single batch’s repositioning is not easily found

with an insert move. Therefore, they jointly apply local search

procedures in a sequential manner to overcome these

weaknesses and come up with a total of 22 different VNS

heuristics. They found H20 (LS2 + LS1 + LS4 + LS3) and

H22 (LS4 + LS3 + LS2 + LS1) are the best performing

heuristics.

III. COMPUTATIONAL EXPERIMENTS

In this section, we test the effectiveness of our CP model.

We compare it with the MIP model as well as the VNS

heuristics from Cakici et al. [3]. MIP and CP models are

generated by IBM OPL and solved by CPLEX 12.6.3 on a

personal computer with an Intel Core i5-3470 @ 3.2 Ghz

processor and 16 GB RAM.

A. Problem instances

To test our model, we borrow the same test problem instances

used by Cakici et al. [3]. They consider four levels of the

number of jobs: 15, 25, 50, and 100, and also consider two

levels of the number of machines: 2 and 3. Two different

levels of number of job families are investigated: 3 and 5 as

shown in Table II. The maximum batch size is set as 50, and

job sizes are generated from a discrete uniform distribution of

Fig. 2. A schematic diagram representing interval variables, state functions,

and cumul functions.

0894-6507 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSM.2017.2740340, IEEE
Transactions on Semiconductor Manufacturing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

[1, 50]. Processing times are generated from a discrete

uniform distribution of [1, 15]. Job weights are randomly

generated from a discrete uniform distribution of [1, 10]. For

each combination of the levels, one-hundred-sixty problem

instances are generated yielding a total of 2560 (4 × 2 × 2 ×

160) problem instances.

TABLE II

Factors and levels

 Factors Levels

Jobs 15, 25, 50, 100

Families 3, 5

Machines 2, 3

We limit the computational time of CP to 180 seconds because

a diffusion scheduling system in the semiconductor industry is

expected to generate a Gantt-chart schedule every few

minutes.

B. Results

Table III summarizes the computational results of the small

15-job problem instances, a total of 640 instances. Columns 2–

6 contain the performance measures of each model. Cakici et

al. [3] found that H20 and H22 are the best performing VNS

heuristics so we benchmark them. Row 1 contains the average

TWCT of each model. The number of times that a given

model produced an optimal solution for each problem instance

is reported in parentheses. Row 2 reports the performance

ratio,
𝑇𝑊𝐶𝑇(𝑚𝑜𝑑𝑒𝑙)

𝑇𝑊𝐶𝑇(𝑜𝑝𝑡𝑖𝑚𝑎𝑙)
, to assess the solution quality of each

model. The last row reports the average run-time of each

model. All the test instances, log files, and summary are

located at http://schedulingworld.com/

The MIP-TI from Cakici et al. [3] successfully reaches at an

optimal for all instances within 22.2 seconds on average. On

the other hand, MIP-PA finds an optimal for 493 out of 640

instances within 299.02 seconds on average. We confirm the

effectiveness of the time-indexed MIP model.

CP finds an optimal for all problem instances but one

problem instance (3m5f_12116). The optimal objective

function value is 719 whereas CP returns 720. However, it

impressively finds optimal solutions on average within 2

seconds compared to 22 seconds by MIP-TI.

 Table IV summarizes the performance measures for the 25-

job problem instances. CP finds the best solutions in 633 out

of 640 instances and is twice as fast as the VNS heuristics. At

this time, both MIP models could not reach at an optimal even

after several hours of runtime so the table only reports CP and

VNS results. However, we are still interested in the solution

quality against an optimal so we let CPLEX run for an

unlimited time.

Table V reports a comparison against optimal solutions of

four individual instances after the exhaustive experimentation.

We find our CP model is capable of generating solutions

within about 2% of optimality in these 25-job instances.

Tables VI–VII summarize the performance measures for the

50 and 100 job problem instances. In this experimentation,

CPLEX crashed with an error of “out of memory” after

several days of runtime so we cannot compare to an optimal.

When we compare CP against the VNS heuristics, CP

consistently finds the best solutions faster than the VNS

heuristics.

Tables VIII–IX summarize the performance measures by the

number of machines and the number of job families

respectively. The results do not show a significant difference

between the different levels.

It is worth mentioning that the proposed CP model always

finds a feasible solution within 1 s for all test problem

instances. This remarkable run-time advantage of CP model

may bring a paradigm shift to real-time scheduling, from real-

time dispatching, that is still prevalent in practice.

TABLE V

PERFORMANCE COMPARED TO OPTIMAL SOLUTIONS (25-JOB INSTANCES).

 MIP-TI Best of H20 & H22 CP

Instances TWCT (Runtime)
TWCT

(Runtime)
PR

TWCT

(Runtime)
 PR

2m3f_1_1_1_1_1
1527*

(194164.6)

1580

(14.7)
1.0347

1562

(0.9)
1.0229

2m5f_1_1_1_1_1
1675*

(1213.88)

1741

(38.2)
1.0394

1706

(14.2)
1.0185

3m3f_1_1_1_1_1
1146*

(4029.02)

1155

(14.3)
1.0079

1152

(7.5)
1.0052

3m5f_1_1_1_1_1
1290*

(1938.50)

1299

(59.6)
1.0070

1290

(11.2)
1.0000

* indicates the optimal solution TABLE III
PERFORMANCE COMPARED TO OPTIMALITY (15-JOB INSTANCE).

15 jobs MIP-TI MIP-PA H20 H22 CP

Avg. TWCT

1347.87

(640)

1349.75

(493)

1394.60

(95)

1395.77

(91)

1347.87

(639)

Avg. PR 1.0000 1.0014 1.0347 1.0355 1.0000

Avg. Run-time 22.2282 299.02 19.1417 19.0769 1.7858

TABLE IV

PERFORMANCE COMPARED TO BEST SOLUTIONS (25-JOB INSTANCES).

25 jobs H20 H22 CP

Avg. TWCT 3085.2484 (24) 3086.4219 (18) 2925.7250 (633)

Avg. PR 1.0545 1.0549 1.0001

Avg. Run-time 39.8255 40.0332 21.0010

TABLE VI

PERFORMANCE COMPARED TO BEST SOLUTIONS (50-JOB INSTANCES).

50 jobs H20 H22 CP

Avg. TWCT 9670.4203 (9) 9675.4391
(14)

9051.0359
(626) Avg. PR 1.0697 1.0702 1.0001

Avg. Run-time 118.1377 117.4761 57.4407

TABLE VII
PERFORMANCE COMPARED TO BEST SOLUTIONS (100-JOB INSTANCES).

100 jobs H20 H22 CP

Avg. TWCT 33051.5438

(14)

33044.1906

(12)

30798.3297

(622) Avg. PR 1.0732 1.0729 1.0005

 Avg. Run-time 218.2115 230.7303 109.8975

http://schedulingworld.com/

0894-6507 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSM.2017.2740340, IEEE
Transactions on Semiconductor Manufacturing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

IV. CONCLUSION

We address the parallel batch-scheduling problem which

involves the constraints of different job release times, non-

identical job sizes, and incompatible job families which can be

represented as Pm|rj, batch, incompatible | ∑ 𝑤𝑗𝐶𝑗. We first

represent the problem with an MIP formulation based on

positional and assignment variables and later adopt a time-

indexed MIP model for a faster computational time. Then, we

propose a CP representation for the first time. Computational

results demonstrate that the CP model has a computational

advantage over the VNS heuristic as well as over the MIPs. It

further reveals that CP is able to find an optimal for 639 out of

640 instances for 15-job instances in less than 2 seconds on

average. For the 25-jobs instances, CP is capable of generating

solutions within 2% of an optimal solution. When we compare

CP against the VNS heuristics, 3–7% reduction of TWC and

47–91% reduction of computational time are achieved overall.

This research can be further extended by considering multi-

stage batch operations. In the semiconductor industry,

researchers have investigated the performance of local

functional areas such as lithography, diffusion, etch, and

implanter for the last two plus decades. Now, there is a growing

need of orchestrating a whole factory to seek global

optimization. One of strong use-cases is to schedule jobs having

a time constraint between consecutive process steps (Sun et al.

[24], Klemmt and Mönch 2012 [13], Sadeghi et al. [23]).

Another use-case is to schedule urgent (hot, rocket, or ultra)

jobs in order to meet a due date. Due to the non-preemptive

nature of machines in a fab, a floor supervisor often takes an

extreme measure letting some load ports of a machine empty as

urgent jobs are approaching from an upstream operation which

results in a productivity loss. A similar application seems to be

prevalent in the production of pharmaceuticals

(Sundaramoorthy and Maravelias [25], Kopanos et al. [16]).

However, their batch stays unchanged throughout the floor

compared to the dynamic nature of semiconductor industry

where jobs are repetitively grouped for a batch-processing and

un-batched for single processing, as jobs travel routes which are

comprised of 500–1000 steps. Lastly, it will be interesting to

compare CP against other metaheuristics in terms of run-time

and solution-quality.

ACKNOWLEDGMENTS

The author would like to thank Philippe Laborie (IBM CPLEX

Optimization Studio Team) for the valuable comments and

technical support.

REFERENCES

[1] Almeder, C., and Mönch, L. 2011. Metaheuristics for scheduling jobs

with incompatible families on parallel batching machines. Journal of the

Operational Research Society, 62(12), 2083-2096.

[2] Balasubramanian, H., Mönch, L., Fowler, J., and Pfund, M., 2004.

Genetic algorithm based scheduling of parallel batch machines with

incompatible job families to minimize total weighted
tardiness. International Journal of Production Research, 42(8), 1621–

1638.

[3] Cakici, E., Mason, S. J., Fowler, J. W., and Geismar, H. N. 2013. Batch
scheduling on parallel machines with dynamic job arrivals and

incompatible job families. International Journal of Production Research,

51(8), 2462–2477.
[4] Dobson, G., and Nambimadom, R. S. 2001. The batch loading and

scheduling problem. Operations Research, 49, 52–65.

[5] Fowler, J. W., Phillips, D. T., and Hogg, G. L. 1992. Real-time control of
multiproduct bulk-service semiconductor manufacturing processes. IEEE

Transactions on Semiconductor Manufacturing, 5(2), 158–163.

[6] Glassey, C. R., & Weng, W. W. (1991). Dynamic batching heuristic for
simultaneous processing. IEEE Transactions on Semiconductor

Manufacturing, 4(2), 77-82.

[7] Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979).
Optimization and approximation in deterministic sequencing and

scheduling: a survey. Annals of discrete mathematics, 5, 287-326.

[8] IBM Software, 2010. Modeling with IBM ILOG CPLEX CP Optimizer –
Practical Scheduling Examples [White paper]. Retrieved from

http://www-01.ibm.com/software/integration/optimization/cplex-

optimization-studio/practical-scheduling-examples/
[9] IBM Software, 2015. IBM ILOG CPLEX Optimization Studio V12.6.3.

[10] Jung, C., Pabst, D., Ham, M., Stehli, M., & Rothe, M. (2014). An effective

problem decomposition method for scheduling of diffusion processes
based on mixed integer linear programming. IEEE Transactions on

Semiconductor Manufacturing, 27(3), 357-363.

[11] Kalir, A., & Bouhnik, S. (2006). Achieving reduced cycle times in
semiconductor manufacturing via effective control of the PK equation

factors. IFAC Proceedings Volumes, 39(3), 65-69.
[12] Keha, A. B., Khowala, K., & Fowler, J. W. (2009). Mixed integer

programming formulations for single machine scheduling problems.

Computers & Industrial Engineering, 56(1), 357-367.
[13] Klemmt, A., & Mönch, L. (2012, December). Scheduling jobs with time

constraints between consecutive process steps in semiconductor

manufacturing. In Proceedings of the Winter Simulation Conference, 194.
[14] Klotz, E., and Newman, A. M., 2013. Practical guidelines for solving

difficult mixed integer linear programs. Surveys in Operations Research

and Management Science, 18(1), 18–32.
[15] Koh, S. G., Koo, P. H., Kim, D. C., and Hur, W. S. (2005). Scheduling a

single batch processing machine with arbitrary job sizes and incompatible

job families. International Journal of Production Economics, 98(1), 81–
96.

[16] Kopanos, G. M., Méndez, C. A., & Puigjaner, L. (2010). MIP-based

decomposition strategies for large-scale scheduling problems in
multiproduct multistage batch plants: A benchmark scheduling problem

of the pharmaceutical industry. European journal of operational

research, 207(2), 644-655.
[17] Laborie, P., and Rogerie, J. 2008. Reasoning with Conditional Time-

Intervals. In FLAIRS conference, 555–560.

TABLE VIII
PERFORMANCE COMPARED TO BEST SOLUTIONS

(ALL JOB SIZES: FACTOR = NUMBER OF MACHINES).

Machines Indexes H20 H22 CP

2

Avg. TWCT 13807.14 (71) 13807.43 (70) 12915.33 (1256)

Avg. PR 1.0691 1.0691 1.0000

Avg. Run-time 122.21 56.06 44.71

3

Avg. TWCT 9793.77 (71) 9793.48 (65) 9146.15 (1264)

Avg. PR 1.0708 1.0708 1.0000

Avg. Run-time 75.45 147.60 50.35

TABLE IX

PERFORMANCE COMPARED TO BEST SOLUTIONS
(ALL JOB SIZES: FACTOR = NUMBER OF FAMILIES).

Families Indexes H20 H22 CP

3

Avg. TWCT 11718.84 (55) 11711.44 (50) 10905.86 (1270)

Avg. PR 1.0745 1.0739 1.0000

Avg. Run-time 132.91 70.98 47.17

5

Avg. TWCT 11882.07 (87) 11889.48 (85) 11155.63 (1250)

Avg. PR 1.0651 1.0658 1.0000

Avg. Run-time 64.75 132.68 47.89

0894-6507 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSM.2017.2740340, IEEE
Transactions on Semiconductor Manufacturing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

[18] Laborie, P., Rogerie, J., Shaw, P., and Vilim, P. 2009. Reasoning with

Conditional Time-Intervals. Part II: An Algebraical Model for Resources.
In FLAIRS conference, 201–206.

[19] Lawler EL, Labetoulle J., 1978. On preemptive scheduling of unrelated

parallel processors by linear programming. Journal of the ACM, 25(4),
612–619.

[20] Malapert, A., Guéret, C., and Rousseau, L. M. 2012. A constraint

programming approach for a batch processing problem with non-identical
job sizes. European Journal of Operational Research, 221(3), 533–545.

[21] Mazumdar, C. S., Mathirajan, M., Gopinath, R., and Sivakumar, A. I.

2008. Tabu Search methods for scheduling a burn-in oven with non-
identical job sizes and secondary resource constraints. International

Journal of Operational Research, 3(1-2), 119–139.

[22] Mönch, L., Fowler, J.W., and Mason, S.J. 2013. Production Planning and
Control for Semiconductor Wafer Fabrication Facilities: Modeling,

Analysis, and Systems. Vol. 52. Springer.

[23] Sadeghi, R., Dauzere-Peres, S., Yugma, C., & Lepelletier, G. (2015,
May). Production control in semiconductor manufacturing with time

constraints. IEEE/SEMI Advanced Semiconductor Manufacturing

Conference (ASMC), 29-33.
[24] Sun, D. S., Choung, Y. I., Lee, Y. J., & Jang, Y. C. (2005, September).

Scheduling and control for time-constrained processes in semiconductor

manufacturing. IEEE International Symposium on Semiconductor
Manufacturing, 295-298.

[25] Sundaramoorthy, A., & Maravelias, C. T. (2008). Simultaneous batching

and scheduling in multistage multiproduct processes. Industrial &
Engineering Chemistry Research, 47(5), 1546-1555.

[26] Timpe, C., 2002. Solving planning and scheduling problems with
combined integer and constraint programming. OR spectrum, 24(4), 431–

448.

[27] Unlu, Y., & Mason, S. J. (2010). Evaluation of mixed integer
programming formulations for non-preemptive parallel machine

scheduling problems. Computers & Industrial Engineering, 58(4), 785-

800.
[28] Uzsoy, R., 1994. A single batch processing machine with non-identical

job sizes. International Journal of Production Research, 1615–1635.

[29] Uzsoy, R., 1995. Scheduling batch processing machines with
incompatible job families. International Journal of Production

Research, 33(10), 2685–2708.

[30] Vilím, P., Laborie, P., and Shaw, P. 2015. Failure-Directed Search for
Constraint-Based Scheduling. In Integration of AI and OR Techniques in

Constraint Programming, 437–453.

[31] Wang, T., Meskens, N., and Duvivier, D. 2015. Scheduling operating
theatres: Mixed integer programming vs. constraint programming.

European Journal of Operational Research, 247(2), 401–413.

[32] Weng, W. W., & Leachman, R. C. (1993). An improved methodology for
real-time production decisions at batch-process work stations. IEEE

Transactions on Semiconductor Manufacturing, 6(3), 219-225.

[33] Yugma, C., Dauzère-Pérès, S., Derreumaux, A., and Sibille, O. 2008. A
Batch Optimization Sofware for diffusion area scheduling in

semiconductor manufacturing. IEEE/SEMI Advanced Semiconductor

Manufacturing Conference (ASMC), 327–332.

BIOGRAPHIES

 Andy Ham was born in Suwon, South

Korea. He received Ph.D. in industrial

engineering from Arizona State University

in 2009, and M.S. in OR/IE from

University of Texas at Austin in 2000.

He is currently working as an associate

professor in Industrial and Systems

Engineering, Liberty University, Virginia.

Prior to the current position, he worked for

Samsung Electronics, Samsung Austin Semiconductor,

Globlafoundries, AMD, and ILOG, in the areas of modeling,

real-time dispatching, real-time scheduling, supply chain

management, and decision analysis. His research has been

shifted into scheduling of drones and robots in a smart factory,

and scheduling of a fleet of self-driving cars, a fleet of human-

driving cars, a set of drivers, and a set of orders, in a future taxi

company. His research has been published in peer-reviewed

journals such as IEEE Transactions on Semiconductor

Manufacturing, IEEE Transactions on Automation Science and

Engineering, Applied Mathematical Modelling, International

Journal of Production Research, Computers & Industrial

Engineering, etc.

 John W. Fowler is the Motorola Professor

of International Business of the Supply Chain

Management department at ASU. His

research interests include discrete event

simulation, deterministic scheduling, and

multi-criteria decision making. He has

published over 120 journal articles and over

100 conference papers. He was the Program

Chair for the 2002 and 2008 Industrial

Engineering Research Conferences and the 2008 Winter

Simulation Conference (WSC). He recently served as Editor-

in-Chief for IIE Transactions on Healthcare Systems

Engineering. He is also an Editor of the Journal of Simulation

and an Associate Editor of IEEE Transactions on

Semiconductor Manufacturing. He is a Fellow of the Institute

of Industrial and Systems Engineers (IISE) and recently served

as the IISE Vice President for Continuing Education, is a former

INFORMS Vice President, and served on the WSC Board of

Directors 2005-2017.

